THE EUCLIDEAN ALGORITHM IN CUBIC NUMBER FIELDS

STEFANIA CAVALLAR, FRANZ LEMMERMEYER

ABSTRACT. In this note we present algorithms for computing Euclidean min-
ima of cubic number fields; in particular, we were able to find all norm-
Euclidean cubic number fields with discriminants —999 < d < 10%.

1. INTRODUCTION

This article deals with the problem of determining whether a given cubic num-
ber field is Euclidean with respect to the absolute value of the norm. The corre-
sponding problem for quadratic number fields was solved in 1952, when Barnes and
Swinnerton-Dyer showed (after much work done by various authors) that the fol-
lowing list of discriminants of norm-Euclidean quadratic number fields is complete:

d = —11,-8,—7,-4,-3,5,8,12,13,17,21,24,28,29, 33,37, 41, 44, 57,73, 76.

In the cubic case, Davenport proved that the number of norm-Euclidean complex
cubic number fields (i.e. cubic fields with unit rank 1) is finite, whereas Heilbronn
conjectured that there are infinitely many totally real cubic fields which are norm-
Euclidean. We hope that the methods presented in this paper will eventually lead to
a complete list of norm-Euclidean complex cubic fields, and that extended compu-
tations for real cubic fields will show whether Heilbronn’s conjecture is reasonable
or not.

2. NOTATION

In order to present our method we need a few definitions. Let K be a number
field, and let Ok denote its ring of integers. The Euclidean minimum of { € K is
defined to be

M(K,€) =inf {|Nk/o(§ —n)|: 1€ Ok}
The field K is Euclidean with respect to the absolute value of the norm (norm-
Euclidean for short) if M(K,£) < 1 for all £ € K. Let us introduce the Fuclidean
minimum M (K) of K by putting M (K) = sup {M(K,§) : £ € K}. Obviously, K
is norm-Euclidean if M(K) < 1, and not norm-Euclidean if M(K) > 1 or if there
is a £ € K such that M(K) = M(K ) =1.

Next we introduce the inhomogeneous minimum. To this end let K be a num-
ber field generated by a root e of an irreducible monic polynomial f € Z[z]. Let
a1, ... ,a, denote the real roots, and apy1,@ 51, .. , s, @ the s pairs of complex
conjugate roots of f in C; then the maps & — «; can be extended to yield r
embeddings ¢;,...,¢, : K — R and s pairs of complex conjugate embeddings
¢7‘+11¢7‘+1:~~ :d’s:d’s K —C

Choose a Q-basis {f1,...,08,} of K; the map

w:K——)R":Zaj,Bjn——)(al,“.,an)
1
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embeds K into R”, and we will identify K and m(K) for the rest of this article.
Clearly K is dense in R™, so we will write K = R" if we want to make it clear that
we regard R” as the closure of K. Now

N:R* —R:(z1,...,2n) I—-)leiﬂi¢j(ﬁi)
=1 i

[ ]

_r+l i

1s a continuous map which coincides with the absolute value of the norm Nk q
when restricted to K. Similarly, the maps

[ R —= Rz = (z1,...,2,) — |2|; = sz’d’f('@‘)

(0<ji<r+s),

are continuous and their restrictions to K agree with the r + s archimedean val-
uations of K. By an abuse of language, we will refer to the maps N and |- |; as
the 'norm’ and the ’valuations’ of K, respectively, although N is not a norm on K
since N(z) = 0 does not imply z = 0. Similarly, the | - |; are not valuations of K
for the same reason. All we can say is

Proposition 1. Let K be a number field, and assume that lim;_, o, |£;]; = 0 for all
1< j<r+s and a sequence of elements £ € K. Then lim;j_,o & = 0.

Proof. K is an n-dimensional @Q-vector space, with a nondegenerate bilinear form
given by (£,m) = Trg/g(én), where Trg g denotes the trace of K/Q. Choose a
Q-basis {a1,... ,an} of K, and let {B1,..., 8.} denote the dual basis with respect
o {:,-), i.e. the basis with the property Trx, q(a:f;) = d;; (Kronecker’s delta).

Now assume that lim; o |€i|; = 0 for all 1 < j < r+ s, and let § > 0 be given;
then there exists a.n N € N such that |§;]; < dforalli > Nand 1 <j<r+s.
Write & as & = xl Doy + ... +2Pa,. Then |x,(:)| = | Tri/q(Bx&i)|- Since the trace
is the sum of all conjugates of 5x£;, applying the triangle inequality yields

2] < 1Bkl F -+ 1Bkbile + 20Builrgr + - -+ 2|BkEilrrs
< (1Bl + -+ 2(Bklr4s) < 6C,

where C = |Bk|1 + ...+ 2|Bk|r+s does not depend on ¢ or the choice of . Since we

can make ¢ as small as we please, we find that lim;_, :n,(:) =0foral l<k<n,
and this is equivalent to lim;_,o, & = 0. O

Obviously K is norm-Euclidean if and only if for every £ € K thereisan o € O
such that N(£ — a) < 1. Actually, all known examples of norm-Euclidean number
fields satisfy the stronger condition that for every ¢ € K there exists an a € Ok
such that N(§{ — o) < 1. We put

M(R,€) = inf {N(§ - 1) : 7€ Ok},
and define the inhomogeneous minimum of K as M(K)=sup {M(K,¢): ¢ € K}.
Clearly M(K) < M(K); it is conjectured that M (K) = M (K) for all number fields,
but so far this equality has been proved only for fields with unit rank <1.
We say that M(K) is isolated if Mo (K) = sup {M(K,¢): £ e K\{(: M(K ¢) =
M(EK)}} < M(K). In this case, we call M(K) = M;(K) the first and M,(K) the
second minimum of K.

Remark 1. K is a ring. In fact, the product of two elements £ = > a;a! and
n= Zbia‘ of K has the form Zc;a‘, where ¢; is a polynomial in Q[ay, ... ,b,].
Thus, the product £n can be given a meaning for real values of the coefficients a;, b;.
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Now put n = (K :@Q), and choose an integral basis {#1 = 1,82,...,0,} and a
real number k£ > 0 (for example k = 0.99). We start by dividing

_ﬁ_*_ = {5 = Zaiﬂi |a1 € [0,1/2], ag,...,0n € (_1/2:1/2]}
i=1

into smaller subcubes. Such a subcube S is called k-covered (or simply covered if
the reference to k is clear) if we can find a ¥ € Ok such that N({ — ) < k for all
£ € S; it is called uncovered if we cannot find such a v (even if there exists one).
Finally, a point £ € K is called k-exceptional if N (£ —+) > k for all v € Ok.

Remark 2. Observe that F is ‘half a fundamental domain’ in the sense that
every £ € K /Ok has a representative in F = F4 U F_, where F_ = —F, (and
only one unless the representative lies on the boundary of F). It is clearly sufficient
to consider F since N(=¢£) = N(£). For cyclic cubic fields K we could reduce F.
further by exploiting the fact that N(£7) = N () for all o € Gal(K/Q).

Remark 3. Occasionally it simplifies computations to use fundamental domains
other than F; they will be denoted by F and we will always assume that F has
compact closure. As an example, take

ﬁ: {6 = ;a,’ﬂi Ial S [0, 1), ag,...,0n € (—‘1/2,1/2]}

Remark 4. For real numbers k', k > 0 such that &' > k it is clear that any k-
covered set is also k'-covered, and that any k’-exceptional point is k-exceptional.

3. THE ALGORITHMS

In this section we will describe the five programs (Eu3_1, ... , Eu3_5) which have
allowed us to compute Euclidean minima M (K) for many cubic number fields K.
Since we used floating point arithmetic to compute the M (K) (which are rational
numbers, at least in each case we succeded in its computation), a few explanations
are in order. Suppose that we want to show M(K) = ¢ for a number field K.
Then we choose & < 0.99¢ (as a protection against rounding errors), and, using
the programs Eu3_1 — Eu3_3, we compute cubes S; which contain all k-exceptional
points (we want to be sure that they contain every c-exceptional point). Then
we exploit the action of the unit group on these cubes to compute the possible
exceptional points, and since this is done with integer arithmetic, we are able to
get exact results.

Experiments with e.g. flelds whose minima are known from hand computations
(choosing values of k close to the minimum and using very small cube lengths /)
have led us to trust our results. Moreover, all our results agree with those obtained
earlier (e.g. by Smith and Taylor) or afterwards (by R. Quéme).

Our programs require as input a file called disc (i.e. 985 for the field with dis-
criminant d = 985; for complex fields we used the absolute value of the discriminant
preceded by 7.7, for example 199 for the field with discriminant d = —199). This
file contains the following data:

o disc K;

o the coefficients of the irreducible monic polynomial f;

e — for real fields the roots of the polynomial e, o, o”;
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~ for complex fields the real root «, the real and the imaginary part of the
complex root;

e the coefficients with respect to the base {%, %, %3 (where g is defined below)
of a system of independent units;

e the index ¢ = (Ok : Z[a]) and in the case of g # 1 also g5, gy, g, where
{1,e,6 = ggi + g?”a + 9;—&2} form a Z-basis of Ok

e the value k > 0;

o the edge length £ of the cubes;

e the coordinates of the uncovered cubes.

For the sake of simplicity we treat only cubes having the same size; thus a cube
is uniquely determined by its leftmost corner and the edge length £. We therefore
start with the four cubes making up 7, and the initial file 985, for example, looks
as in Table 1 below:

Table 1 Table 2 Table 3

985 1 -6 -1 985 1 -6 -1 985 1 -6 -1
-2.93080160017276 -2.93080160017276 P
-0.16296185677753 -0.16296185677753 0.02

2.09376345695029 2.09376345695029 0.38 -0.22 0.38

0 1 0 0 1 0 0.38 -0.22 0.4

2 -1 0 2 -1 0 0.38 -0.2 0.38

1 1 0.38 -0.18 0.38

0.9 0.9 0.38 -0.2 0.4

0.5 0.1 0.4 -0.22 0.38

0 -0.5 -0.5 0.3 -0.5 -0.5 0.4 -0.22 0.4

0 -0.5 [0] 0.3 -0.5 -0.3 0.4 -0.2 0.38

0 0 -0.5 e 0.4 -0.18 0.38

0 (o] 0 0.4 0.4 0.4 0. -0.2 0.4

We now run the programs Eu3_1, Eu3_2 and Eu3_3, which will be described in the
sequel, on the file disc. The programs Eu3_4 and Eu3.5 will be explained before
Prop. 4 and Cor. 7, respectively.

Eu3_1. This program first asks for a discriminant, then reads the corresponding file
disc. The first eight lines of disc are copied to the (temporary) file disc.new. The
next input is an integer f which is the factor by which we divide the edge length of
the cubes. We have used f € {1,2,4,5}, depending on the size of disc; of course
the choice f = 1 is only useful after k¥ has been replaced by some k¥’ > k. Thus
Eu3_1 reads £ from disc and writes £/f to disc.new. Moreover, if no file disc.p
exists, Eu3_3 creates one and writes the translation vector (0, 0, 0) into it.

Now Eu3_1 splits each cube read from disc into f3 smaller ones, computes an
upper bound B = B(S) of the minimum for each of these subcubes, and writes
those S with B(S) > k to the file disc.new. Having reached the end of the file
disc, it copies disc to disc.bak (a security backup) and disc.new to disc.

How do we bound the minimumon a cube S = [a, a+£] x [b, b+£] x [c, c+¥]7 Since
the norm is the product of the three K-valuations, we only need to find bounds
for |¢|;, where £ = z + yo + 26 € S. But since |{[; is a linear function of z,y, 2, it
takes its maximum at the corners of the subcubes. Instead of computing |- |; at all
eight corners and taking the maximum of these values as our upper bound (as the
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programs with which we computed the tables at the end did), we can use a trick
due to Roland Quéme [9] which gives this bound at one stroke (but which doesn’t
seem to work except for valuations corresponding to real embeddings): in fact, the
value of | - |; at the eight corners is one of

ok 3+ 5a£46];,  where & =(a+5)+(b+Fat(c+5),

the corners corresponding to the different choices of the signs. Using the triangle
inequality we easily get

ok &+ 5o 50]; < [Coly + 5(1+lel; + 10];).

On the other hand, choosing the signs in such a way that &, £1, +a and 9 all
have the same sign (in the embedding corresponding to |- [;; here is where we need
that the embedding is real) we see that this bound is best possible.

Using this method of bounding N (S —+), Eu3_1 will start looking for translation
vectors in disc.p; if there is no element in this file such that N(S — ) < k we
search for translation vectors in the set

(1) I'={z+ya+20|(z,y,2) € Z° || < My, |yl < My, |2| < M.},

where My, M,, M, were usually chosen (depending on £) as follows:

£>0.02]0.01>£>0.001 | £<0.0005
M, | 8 19 30
M,| 5 12 17
M, 2 3 5

The nonsymmetric limits were suggested by experience. If we find a translation
vector v € Ok such that N(S — ) < k we write v to the file disc.p. There are
several reasons for proceeding like this:

1. If N(S —v) < k, then 4 has a good chance of satisfying N(S' — ) < k for
cubes §' in the vicinity of S. By searching disc.p first we actually save much
CPU time.

2. If we find that we have to replace k by some k¥ < k, we have to redo the
computations from start; we are, however, able to use the translation vectors
found in the previous runs. In fact, our programs allow the option of searching
for new vectors or just using those in disc.p.

After the first run of Eu3_1 with f = 5 (which took 0.63 seconds of CPU time
on an RS 6000), the file 985 looks as in Table 2. It contains exactly 106 noncovered
cubes. The file 985.p contains the following translation vectors:

(000), (010), (021), (100), (-1 -4 ~1), (03 -1), (-1 -32),
(01-1), (020), (30 -1), (02-1), (-1 00), (-1 -42), (-=200)

Eu3_2. This program acts like Eu3_1 with the difference that the original cube is
written to disc.new as soon as one of its subcubes cannot be covered. In other
words: Eu3_2 eliminates those cubes whose subcubes of length £/ f can all be cov-
ered. This is convenient if we already have to deal with a lot of cubes and a further
division done as by Eu3_1 is likely to lead to an enormous number of smaller cubes.
We usually run Eu3_2 before using Eu3_3 in order to save CPU time.
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Eu3_3. Scanning through all the integers of I (see (1)) takes much time. We can
avoid searching for explicit translations if we proceed as follows: we multiply a cube
T with a non-torsion unit ¢, translate the result back into the fundamental domain
by subtracting 8 € O and look whether ¢T' — 3 intersects one of the cubes not
yet covered. The program does not really compare the oblique prism T — 8 with
the uncovered cubes but rather uses the smallest box B which contains 7" (actually
it is slightly larger in order to avoid false results due to round-off errors) and has
faces parallel to the coordinate planes (this will be improved in the next version
of our programs). Evidently we have to compare the box also with the ‘opposite’
cubes, i.e. the cubes multiplied by —~1, since we only kept the ‘bad’ cubes of half
the fundamental domain F . If there is no intersection, the cube itself can be
eliminated.

The reason why this program is so successful is the following: suppose that S is
a subcube such that ¢S — a (where a € Ok is the element needed to translate €S
back into F) is covered by v € Ok, i.e. N(eS—a—=) < k. This means of course that
N(S—pB) < kfor B=¢e""(a+7): but # will usually have much larger coefficients
than those scanned in (1). Moreover, in general €S — a will not be covered by a
single element v € Ok, which means that we would have to divide S into subcubes
before we could cover it directly.

A run of Eu3_1 on the file in Table 2, again with f = 5, leaves only 27 subcubes
uncovered. Running Eu3_3 twice on the file obtained we are left with 10 uncovered
cubes (see Table 3). Running Eu3_2 on the file in Table 3 deletes (0.38 -0.18
0.38) and (0.4 -0.18 0.38). Now we have covered F except for the set 7 =
[0.38,0.42] x [-0.22, -0.18] x [0.38,0.42]. Multiplying the corners P of T by the
unit o we find

P aP
0.38 — 0.22a+ 0.38¢% | 0.38 — 0.34a + 0.40a” + 3a — a?®
0.38 — 0.22a + 0.4202 | 0.42 — 0.10a + 0.36a2 + 30 — a2
2
2
2

0.38 — 0.18a + 0.38a2% | 0.38 — 0.34c + 0.440% + 30 — a
0.38 — 0.18a + 0.420% | 0.42 — 0.10a + 0.4002 + 3a — a
0.42 — 0.22a + 0.38a2 | 0.38 — 0.30a + 0.4002% + 30 — «
0.42 — 0.22a + 0.4202 | 0.42 — 0.06c + 0.36® + 3a — a?
0.42 — 0.18a + 0.382 | 0.38 — 0.30 + 0.44a? + 3a — a2
0.42 — 0.18a + 0.42a2 | 0.42 — 0.06a + 0.400% + 3a — a2

This shows that aT" is contained in the set
T’ = [0.38,0.42] x [—0.34, —0.06] x [0.36,0.44] + 3a — o?

(in general, this is a very crude estimate; the next version of our programs will take
the actual shape of €7 into account). Observe that 7" — 3a + o does not intersect
—T'. If we were to keep dividing the uncovered cubes, this picture would not change:
the length of the cubes would become smaller and smaller, and so would the size of
our uncovered set T, but a7 — 3a + o? would always have points in common with
T'. This is the situation which is described in

Proposition 2. Let K be a number field and £ a non-tersion unit of Ex . Suppose
that T C F has the following property:

there exists a unique § € Ok such tﬁat, for all £ € T, the element
e — B lies in a k-covered region of F' or again in T'.
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Then every k-exceptional point &g € T satisfies |Eo— Efl | = 0 for every K -valuation
|-|; such that |e|; > 1. If, moreover, |e|; # 1 for all K-valuations, then the sequence
£0,&1,&2,. .. of k-exceptional points defined by the recursion &1 = && — [ satisfies
im0 & = 5.

Proof. Suppose that & € T is k-exceptional. Since M (K,&) = M(K, &€ — ), our
assumption implies that all the £; defined by £;+1 = &&; — B are k-exceptional points
inT.Now ( = -E—iLl is the fixed point of the map £ — £ — (3. Induction shows that
& —(=¢'(& — ¢) for all i > 0. In particular we see that

(2) & —Cl; = lelf 160 = Clj-

Now we claim that there exists a constant C' > 0 such that |§; — ¢|; < C for all
i > 0 (C = C(j) may depend on j, but we can always choose C as the maximum
of the (finitely rnany) C(5))- In fact, since &, € F we see that their difference is
an element of 2F C K. Since 2F has compact closure and | - |; is continuous, |15
has a maximum C on the closure of 27 and hence is bounded on 2F.

Assume that |e|; > 1; then the fact that the left hand side of Equ. (2) is bounded
implies that |{o —(|; = 0. This in turn gives immediately |§; —{|; = 0. If, moreover,
lel; # 1 for all j < r+ s, then either |g|; > 1 and |§ —¢|; = 0, or |e|; < 1 and
0 = lim;j 00 & — ¢|;. This implies lim&; = ¢ by Prop. 1. O

In our case there are three embeddings; we have |a|; > 1 for j = 1,3, and
|ee|; < 1 for j = 2. From Prop. 5 we can deduce that every 0.9-exceptional point
£ € T satisfies [¢ — (|1 = |£ — (|3 =0, where ( = 3—0‘——“— = (2 — a+20?). In order
to show that £ is in fact the only 0. 9—except10nal pomt ¢ € T we have to prove
|€ — (|2 = 0; this is done by using the inverse of the unit a:

Theorem 3. Let K be a number field, T a compact subset of ﬁ, and let € € Ex
be a non-torsion unit. Suppose that

1. there is a § € Ok such that, for all € € T, €€ — B lies in a k-covered region
ofﬁ or again in T

2. for all £ € T there is a v € Ok such that e~ '€ — v lies in a k-covered region
ofﬁ or again in T';

3. lelj#1for1<j<r+s.

Then e—iLl is the only possible k-exceptional point of T.

Proof. Let £ € T be a k-exceptional point. If |¢|; > 1 then Prop. 2 shows that
€ — z—%h = 0. The other K-valuations |- |; satisfy |e|; < 1 because of 3., and we
see |e71|; > 1. Since £ is k-exceptional, so is & = e '{ —y € T. Now e, — 8 =
(e —y)—B =E6—(B+ey); but £ € T and £ — (B + ey) € T imply that
B+ey =0, ie v = —e"13. Therefore the v in 2. is uniquely determined, and
we can apply Prop. 2 with e~ and + instead of € and 8. This shows that any k-
exceptional point ¢ € T satisfies | — == |; = 0 for all K -valuations with |e|; < 1.
But =1— =% = ;g—f Thus |£ — Zi"—1|.7 =(0forall 1< j<r+s,and by Prop. 1
this implies that £ = E—@—l O

Remark 5. This theorem is attributed to Cassels in [1].
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Remark 6. For every number field K there exists a complete system of indepen-
dent units ¢; such that |g;|; # 1. This follows directly from Minkowski’s proof of
Dirichlet’s unit theorem.

Remark 7. If condition 1. of Thm. 3 is satisfied but 2. is not (for example if there
is a second uncovered subset 7" such that e~!T and 7" have common points mod
Ok ), then T might contain irrational exceptional points (converging to E—f—l) as in
the last sentence of Prop. 2.

Remark 8. If ¢7" intersects —T', try to apply Thm. 3 with ¢ replaced by —e¢.

Remark 9. Suppose that (1, 1, 3) is one of the k-exceptional points; in this case,
there will be uncovered sets in all eight corners of the fundamental domain F.In
order to apply Prop. 2 one has to choose F' e.g. as in Remark 3, because this allows

us to collect these uncovered cubes into one set T’ lying in the center of F.

In our example, computations similar to those above with a=! = —6 + a + a?
instead of o show that o~ !7" is contained in

T" = [0.26,0.54] x [~0.24, —0.16] x [0.38,0.42] + 3 — a.

Now Thm. 3 shows that the only possible k-exceptional point (k = 0.9) in T is
€=z =1 la+ o

Eu3_4. This program does the necessary computations: it checks whether a cube
S multiplied by a non-torsion unit ¢ and translated back into the fundamental
domain F intersects either S or —S; in both cases, the possible exceptional point
is computed and written to a file disc.n. We can also search for orbits of length
> 2 by replacing ¢ by ¢” for some n > 2, provided £ is small enough. Verifying
the conditions of Thm. 3 are currently still done by hand; see, however, Remark
12. We also remark that — in order to avoid rounding errors ~ we actually do not
compare ¢S with e.g. S but with a slightly larger cube obtained by adding (resp.
subtracting) 3£ to (resp. from) the coordinates of the corners of S.

The next question is how to compute M (K, ¢). This is done as follows: first we
notice that M(K,&) = M(K,£ + @) for @ € Ok, i.e. M(K,£) only depends on
the coset £ + Ok of £ in K/Ok. Next we observe that M(K,¢) = M(K, &£) for
units € € Ex. For £ € K/Ok put Orb, (&) = {€*¢ : n € Z} (this is the orbit of &
under the action of €) and Orb(£) = {ef : ¢ € Ex}. Then the Euclidean minimum
is constant on every orbit.

Proposition 4. For number fields K with unit rank > 1, the following properties
of £ € K/Ok are equivalent:

1) Orb(¢&) is finite;

ii) Orb, (£) is finite for some non-torsion unit € € Eg;

iii) £ € K/Ok.
Proof. The implication i) == ii) is obvious. Assume that ¢ is a non-torsion unit
such that Orb, (£) is finite. Then there exists an n € N such that ¢?¢ = &, and this
implies that & = ;,,—"_‘_T + Ok for some a € Ok, i.e. £ € K/Ok.

Finally assume that £ = % + Ok for some o, € Ok. If § € Ek, then £ =
0+ Og and the claim is trivial. Otherwise observe that multiplication by a unit
maps £ to some element of the form % + O, where o’ = ae mod 8. This shows
that # Orb(§) < #(Ok/BOk) = N(B). In fact, if Og has class number 1 and if
(o, B) = 1, then we clearly have # Orb(¢) < #(Ok /80K )*. O
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In this paper we will not deal with computing minima for ¢ € K/Ok with
infinite orbit (the last sentence of Prop. 2 gives a hint as to how such infinite orbits
might arise), so we assume from now on that £ € K/QOk. The basic idea how to
compute M (K, £) is due to Barnes and Swinnerton-Dyer (see [1], Thm. B, for the
case of real quadratic number fields).

Proposition 5. Let K = Q(a) be a number field with unit group Ex. If, given
& € K and a real number k > 0, there exists vy € Ok such that N(§ —v) < k, then
there exists { = Z;;ol a;al € K with the following properties:

1. { =¢&; mod Ok for some &; € Orb(£);
2. |ai| < pi (0<i< n) for some constants p; > 0 depending only on K;
3. N(¢) < k.

Since the number of elements of K satisfying 1. and 2. is finite, we can prove
M (K,€) > k by simply computing the norms of all these elements. We will prove
Prop. 5 only for cubic fields.

Let K = Q(«) be a cubic number field; replace £ by £ — v and choose a unit
€ € Ex such that the conjugates of 8 = £ = a+ba+ ca? are small. Let us consider
the following system of equations:

B = a+ba+eca?
B = a+ba'+ ca’
B = a+ ba" +ca”2
This system is linear in a, b, ¢, and the square of its determinant is
1 o o 2
A=det| 1 o o = disc(l, @, @?),
1 a auz

which is clearly # 0. In fact, we have A = g?disc K for some integer g called the
index of a. Therefore we get, by Cramer’s rule,

\/Za — ,Ba’a”(a” _ a/) +[3/a//a(a_ a”)—l—,@”aa’(a’— a)’
\/Kb — ﬂ(a'z _ a//2) +ﬁ’(a”2 _ az) +,3”(a2 _ 0/2)1
\/ZC — ﬁ(a" _ a’)+ﬁ’(a—— a”)—}-,@"(a’—a).
In order to compute bounds for a,b, and ¢ we have to find good bounds for the
conjugates of § = £e.
We begin with the complex cubic case; as for real quadratic number fields, there

is one fundamental unit 5. Replacing n by 5~! if necessary we may assume that
|n] > 1. Now for every ¢; > 0 there is a unit € = 9™ such that

e < [€e| < a1t nl
Since |&'e’| = |€"€"| in the complex case, we get

NE) _ k
112
= —2 -
where we have put k = N(§) = N(£e). We will choose ¢; in such a way that the
resulting bounds on X = |B(a” — /)|, Y = |f'(a — a")| and Z = |f"(a’ — a)]| are
"2

equal. A little computation shows ¢3 = ’—fl—z%%ll—;, and this yields

X,Y,Z < {kin|Y]A].
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Applying Lemma 6 below to z = X,y =Y and z = Z we find zyz = k+/|A| and
. [kln| 1
el < (g4 ).
o<t )

k
Bl < (X|o"+a/[+Y]o"+al+ Zjata/DVE < 3 |—'/_\’f—['<|a"+a'|+|a"+a1+|a+a'|)

The obvious bound

can be sharpened by applying Lemma 6 to 2 = X|a' + a"|, y = Y|a" + | and
z = Z|a+a'|, and the same goes for |a|. The actual bounds coming from Lemma 6
are computed by machine in each case because they depend on the size of ja+a/|, ...
etc. This concludes the proof in the complex cubic case.

Remark 10. The bounds in the above proof are much better than those obtained
by Cioffari [4] for the case of pure cubic fields.

Lemma 6. Suppose that x,y,z € R satisfy the inequalities 0 < z < ¢1, 0 < y < ¢z,
0<z<ecsg, and 0< zyz = k. Then

k
z4+y+4+z < max {c,—+cj+ }
i#] CiCj

Proof. We want to find bounds for f(z,y) =z +y+ :—y Now f is positive in the
domain under consideration

k
D:{z,y>0::c§c1,y§cz,ry2?},
3

its gradient vanishes only at ¢ = y = /k, and its Hesse matrix there is positive
definite; this implies that f takes its maximum on the boundary.

Assume for example that £ = ¢;; then we have to find an upper bound for
Hly)=ci+y+ ;’fg Again, f; assumes its maximum on the boundary. For y = ¢,

we get the bound ¢; + ¢ + k_. on the other hand from z = Eﬁ; < ez we get

ciea’?

y> £ and we find fi(-£-) =c¢; +c3+ =&

cies? cicg cyca’
The cases y = ¢2 and zy = c"-a are treated similarly. O

Let K be a real cubic number field, and let 7, and 7, denote two independent
units. We will denote the conjugates of £ € K by £,&,£". For units € € Eg and a
fixed embedding K — R we define

L el >,
V() = { le|™t,  if |e] < 1,
and we put y; = 7(771), Y= 7(%)-

Suppose that £ € K has norm k; then, for any real numbers ¢1,¢3 > 0, we can
find a unit € € (7, 72) such that (cf. [8])

a < [ge] £ etmriye, cr < [€'E'] < ey
This gives us the following bounds on |£"e”|:

wmy __N(Ee) _k__
" = e S e
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Now we proceed as in the complex case, put § = &g, and choose ¢1, ¢5 in such a way
that the resulting bounds on X = |8(a”—a')|, Y = |#(a—a")| and Z = |3"(a’—a)|
are equal. In fact, setting

B = kvhéla—a’lla—a”I 3 _ T2l — o||a’ — o
' Hile —arz 2

v 73~ o'

yields the bounds X,Y,Z < {/k - v,v,7,v, VA In particular, we find

1 3
le| < TZ(X+Y+Z) < 3k v vive /A

Making use of Lemma 6 we can improve this by a factor of almost 3/2. The bounds
for |b| and |a| are derived similarly; this concludes the proof of Prop. 5 in the cubic
case. For general number fields, the proof makes use of the dual basis (cf. the proof
of Prop. 1).

Let us get back to our example of real cubic field with discriminant d = 985.
Let a denote a root of f. Then {1,@,a?} is an integral basis of Ok, and two
fundamental units are given by 71 = @ and 7, = 2 — a. Put & = (2 — a + 202);
then Orb(£y) = {&o}. Using k¥ = 1.05 we get the bounds u; = 6.2, gy = 3.2,
pz =1.9. We find M(K,&) =N —2) = 1.

Eu3.5 is the program which does these computations. In fact, for each £ in our list
disc.n, it calculates

min {N (& + a + ba + ¢8)}

for all (a, b, ¢) € Z> such that the coefficients of the sum &; + a + ba + 6 are smaller
than the bounds po, 1, s computed in Prop. 5. Since the constants p; depend
on the number k, we have to rerun the program replacing k& by a real number &
larger than the conjectured minimum (i.e. the one obtained by running Eu3.5 on it).
The biggest value obtained from the various exceptional points gives the Euclidean
minimum M (K) unless they are all smaller than k.

The situation is, however, not always as simple as in Thm. 3. In fact, looking once
more at the cubic number field K with discriminant 985 and using our programs
with & = 0.39, we can cover I except for

Ti | [0.345,0.35] =  [=0.4915,—0.49]
Ty | [0.0175,0.0185] [-0.2375,0. — 2355]
T |[0.3995,0.4005] [—0.201, —0.199]
Ts | [0.4725,0.473) [~0.146, —0.1445] [0.2905, 0.2915]
Ty | [0.2905,0.2915] [0.217,0.219] [~0.437,—0.436]
Ts | [0.436,0.437] x  [0.3265,0.3285]  x  [0.345,0.346]

Applying Thm. 3 to 7 shows that £ = 1(2 — & + 2?) is the only possible k-
exceptional point in 7. Letting ¢ = « act on the T; we find that the ‘orbit’ of T3 is
{T1,—T»,—T3,—T4, Ts}; at this point we need

[~0.0185, —0.018]
[0.4725,0.475]
[0.3995, 0.4005)]

X X X X X

X
X
X
X

Corollary 7. Let K be a number field, ¢ € Ex a non-torsion unit, and suppose
that T1, ..., Ty are compact subsets of F with the following properties:
1. there exist B1,..., 08 € Ok such that, for all§ € T;, e€—B; lies in a k-covered
region of F orin Tj41 (we put Tyyy =T1);
2. for all € € T; there is a vy € Ok such that e~1¢ — lies in a k-covered region
ofﬁ or in Tr(;y, where (j) is an indez depending only on j and not on &;
3. lelj#1lforl<ji<r+s.
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Then the only possible k-exceptional point of Ty is ¢ = e‘*ﬁ:I’ where B = &718; +
€728 + ... + €Bi_1 + Bi. Moreover, the only possible k-exceptional points of the
sets T; are contained in Orb,(().

Proof. Suppose that £, € T} is k-exceptional; then &y = ¢€) — B € Tn, ..., & =
€1 — Bi—1 € Ti, and &40 = €& — B € Ti are k-exceptional. Observe that
i1 = €& — B = €261 — €l — B = ... = '€ — B. From the assumptions

made we can deduce that, for every k-exceptional point & € 71, €' — 3 lies again
in 77. This shows that condition 1. of Thm. 3 is satisfied with & replaced by &£.

In order to prove that condition 2. is also satisfied we use induction to find that
there exists a v € O such that £ = ¢7%¢; — v is an element of some set 7;. From
what we have proved already we know that there exists a uniquely determined
¥ € Ok such that €t — 4" € T}. But £'6 — ' = £ — ely — 4’ € T; implies that
ey +4' = 0 and i = 1. Thus condition 2. of Thm. 3 is also satisfied, and we can
conclude that ¢ = 8/(e* — 1) is the only possible k-exceptional point in 7}. This in
turn implies that e — 41 is the only possible k-exceptional point in T3, etc., and
all our claims are proved. O

In our example of the cubic field of discriminant d = 985 and k = 0.39 we now
check that condition 1. of Cor. 7 is satisfied, and we find 8, = 0, B = —3a + a2,
Bs = —2a, B4 = 2a — o?, and B5 = 3a. This gives § = 7 + 4la — 28c? and
& =06/ —1) = £(19 - 2Ta — o?).

After having verified condition 2., Cor. 7 shows that the only possible k-ex-
ceptional point of T} is £;. Thus the only k-exceptional points of K in |JT; are
& = £(19-2Ta—0?), & = £ (—1+ 13a — 26a?), & = E(—26 + 8a — 160?),
£a = g5(—16 — 120 + 240?), &5 = 52(24 + 18 + 190%). Using k = 0.5 we get the

bounds p; =4.9, po =2.5, ug = 1.5, and M(K,&) = N(¢1 +a) = %

Remark 11. Suppose that, in our Example, we apply Prop. 5to { = -;—(2—a+2a2)
with & = 0.39; the minimal norm of the elements satisfying conditions 1. — 3. turns
out to be 1. Nevertheless we can only conclude that M (K, &) > 0.39. In order to
prove that M (K,€) = 1 we have to apply Prop. 5 again, this time with a & > 1.
Again, the minimal norm is 1, and now we can conclude that in fact M (K,{) = 1.

Remark 12. Collecting the uncovered subcubes S; into the sets 7; of Cor. 7 is
done as follows: assume that S is an uncovered cube, and that €S — 8 € F. Then
the set 77 containing S is taken to be the set of all uncovered S; ‘near’ to S such
that €S; — 8 € F. By proceeding similarly with the uncovered cubes in F \ T} we
eventually arrive at subsets 7; containing all uncovered subcubes.

The programs are available from the authors. We remark that they can also be
used to study weighted norms; details will be presented in [3].

4. SoME HEURISTIC OBSERVATIONS

Consider some { = § + Ok € K/Og; the bigger # Orb(£), the more likely
it is that one of the points in the orbit can be approximated sufficiently well by
some 1 € Ok. In fact, if («, #) = (1) and if # Orb(¢) is maximal (i.e. # Orb(£) =
(Ok : BOK)*), then clearly M(K,{) = 1/N 3. Euclidean minima thus tend to be
attained at points & with small orbits. If K has unit rank 1, then there are many
points with small orbit: just take any -2 for @ € Ok and € € Ek a fundamental

P
unit. If the unit rank is > 2, however, such points are hard to find, because there
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is no guarantee that a/(¢; — 1) has a small orbit with respect to the action of a
second unit &5.

There is one exception, however: suppose that there is a principal prime ideal
p = (n) which is completely ramified in K/Q. Since p has degree 1, for every
€ € Ek there is an integer a € Z such that € = a mod p. Taking the norm gives
*1 = Nkt = Ngyge = @” mod p, where n = (K : Q), and this in turn implies
that e” = a™ = 1 mod p. Therefore the unit group generates at most 2n different
residue classes mod p, hence # Orb(&) < 2n for any £ of type § = 2+ Ok . Therefore
such ¢ have comparatively small orbit and a good chance of producing a large
minimum. In fact, almost all known Euclidean minima of normal cubic fields are
attained at such points.

Another question we would like to discuss is the following: can we expect that
our list of norm-Euclidean complex cubic number fields is complete? Let us see
what is happening in the real quadratic case. There we know (cf. [7]) that (in the
following, d denotes the discriminant disc K of K)

Vd Vd
mSM(K)ST-

This allows us to define the Davenport constant D = sup M (K)/ Vd for real qua-
dratic fields. The example K = Q(\/l_?)), M(K) = 1/3 shows that D > 1/3\/T§.
If we assume that this is a good approximation for D, then there should be no
norm-Euclidean number fields with discriminants > D=2 = 9 - 13 = 117; in fact,
the maximal discriminant of a norm-Euclidean number field is d = 76.

If we try to do the same with complex cubic case then the first problem is that
the exponent 1/2 of the discriminant in the lower bound in

V1| . |d|*/3
o < MWE) < 55

is not known to be best possible. If it is, then we can define a Davenport constant
D = sup M(K)/~+/d for complex cubic fields as well. The example d = —244, where
M(K) = 1/2, shows that D > 1/21/244, and if this bound is good, then there
should be no norm-Euclidean number fields with |d| > 976. The example d = —503
suggests that D is somewhat smaller, but in any case we don’t expect to find
norm-Euclidean fields with |d| > 1500. Basically the same conclusions (with better
bounds) hold if the correct exponent of |d| in the lower bound is 2/3.

In the case of totally real cubic fields there is no known (nontrivial) lower bound
for M(K) at all (of course M (K) > £). If one could show M(K) > ¢v/d for some
c, then the above heuristics show that one has to compute M (K) at least for fields
with discriminants up to 25.000 (in fact Godwin and Smith [5] have shown that
the normal cubic field with discriminant d = 1572 = 24. 649 is norm-Euclidean);
our current data are therefore insufficient for deciding whether such a lower bound
might exist or not.

5. A CONJECTURE

We would like to conclude our paper with a conjecture concerning M(K) for
certain pure cubic fields K:
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Conjecture 1. Let m = £3 4 1 be a squarefree integer, and assume that £ is even;
put & = V¢, K = Q(a), and & = (1 + e+ o?). Then

2 (1864 — 963 + 127 + 12¢), if £ =2 mod 4,

M(R) = M(K,¢) =
(K) = ML) {51;(18#—9E3+30£2+24£—32), if £ = 0 mod 4.

It is easy to see that M (K, &) has at most the value given above; in fact, if
£=2mod 4, then N(3£2 + £ + Lo — 1a?) = L (184* — 943 + 1202 + 12¢), and if
¢ =0 mod 4, then N(2+30+1+ (34— 3)a—307) = F(18£4—9£24+300%+24¢—32).
Numerical computations show that the conjecture is true for £ = 4 and £ = 10.
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Euclidean minima of complex cubic number fields

disc K
-23
-31
—44
-59
-76
—83
—-87

—-104
—-107
—108

—211
—212
—216
—231
—239
—243
—244
—247
—255
—268

—364
—367
-379
—411
—419
—424
—-431
—436
—439
—440

—516
—519
—524
—527
—543
—547
—563
—567
—588
—620
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My (K)
1/5
1/3
1/2
1/2
1/2
1/2
1/3
1/2
1/2
1/2

59/106
5/8
1/2
7/9
8/9

11/18
1/2
5/7

13/15

13/22

9/8
1
397/648

17/22

4/5
19/27
43/64
79/78
17/15

737/1090

36/53

44712/45747

5/4
13/7

> 158664/170633

9/8
2
25/17
5/2
13/8

7. TABLES

M, (K)
> 1/7
<1/4

1/4
1/4
1/3

1/3

>6/11

9/13
>11/18
> 8/11

> 53/76

>1

>19/17

5/4

disc K
~116
—135
—139
—140
—152
—172
—175
-199
—200
—204

—283
—300
—-307
—324
—327
—331
—335
—339
—351
—356

—451
—459
—460
—472
—484
—491
—492
—499
—503
—515

—628
—643
—648
—652
—655
—671
—675
—676
—679
—680
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M, (K)
1/2
3/5
1/2
1/2
1/2
3/4
3/5

1
1/2
61/116

3/2
23/30
9/8
23/36
101/99
3/2
1
9/8
1
7/8

41/48
9/8
43/50
46/61
59/76
2
25/32
23/27
> 307/544
4/5

625,664
25/16
5/4
21/923
40/23
25/19
9/8
7/4
9/8
(x)

M (K)

< 0.47

3/4
7/11

9/11

23/30

> 11/14

15
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disc K
—687
—695
—696
=707
—T716
—T728
-731
—743
—T744
—T748

—823
—-835
—839
—843
—856
—863
—867
—876
—883
—888

—-972
—-972
—980
—983
—984
—996
-999
—1004
—1007
—1011

—1096
—1099
—1107
—1108
—1135
—-1144
—1147
—1164
-1172
-1175
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M(K)
937/945
95/13
186/199
271/270
121/109
(8)

2
1
992/999
62/51

37/25
110353/106265
25/17
134/131
> 454951 /428544
29/11
1115/1028
353/372
49/47
2715/2602

5/4
179/162
7/4
31/11
> 22367/21296
> 6713/5646

3167/2298
41/23
271/207

> 207/199

47/26
2

> 4995,/4384

5115/4033

4867 /3222
136/99

> 1064/918
572/443
37/13

disc K
—751
-755
—756
—759
—-771
—780
—804
—808
—812
—815

—891
-907
—-908
—931
—932
—940
—948
—-959
—-964
=971

—1036
—1048
—1055
—1059
—1067
—1068
—1075
—1080
—1083
—-1087

—1176
—1187
—1188
-1191
—-1192
—1196
-1203
—-1207
—1208
-1219
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M(K)
25/9
1
306/293
11/8
223/252
499/498
> 2771/2568
> 2031/1964
44/31
24543 /25325

7/2
> 113/108
227/91
7/2
68425 /56788
407/358
> 2120/1959
19/7
> 132/127
829/778

133/101
617/488

2381,/1854
> 160/121
> 1499/1350
T77/680
> 10253/1000
3/2
15/8

4/3
11/8
> 22319/14072
11/9
265,168
197/94
> 4775/4608
13/9
845/656
> 709/622
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Euclidean minima of totally real cubic number fields

disc K
49
81

148
169
229
257
316
321
361
404

1129
1229
1257
1300
1304
1345
1369
1373
1384
1396

1957
2021
2024
2057
2089
2101
2177
2213
2228
2233

2857
2917
2920
2941
2081
2993
3021
3028
3124
3132

SHolclolclolclolo i clololoiEdoic ool cRul oo ool GRS RO S
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M(K)
1/7
1/3
1/2
5/13
1/2
1/3
1/2
1/3
8/19
1/2

1/3
16/29
9/25
7/10
1/2
/5
31/37
1/2
11/16
1/2

2
1/2
1/2
9/11
1/2
1/2

<0.39
1/2
1/2

56/121

8/5
8/13
13/20

1/2

1/2

<0.49

1/2

1/2

1/2

1/2

disc K
469
473
564
568
621
697
733
756
761
785

1425
1436
1489
1492
1509
1524
1556
1573
1593
1620

2241
2292
2296
2300
2349
2429
2505
2557
2589
2597

3137
3144
3173
3221
3229
3252
3261
3281
3305
3316
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M(K)
1/2
1/3
1/2
1/2
1/2

13/31
1/2
1/2
1/3
3/5

13/15
1/2
29/43
1/2
1/2
1/2
3/4
19/22
<0.36
1/2

3/5
1/2
1/2

27 /40

11/18
1/2
5/9
1/2

9/16
5/2

< 0.59
1/2
< 0.59
1/2
1/2

13/9

disc K
788
837
892
940
961
985
993

1016
1076
1101

1708
1765
1772
1825
1849
1901
1929
1937
1940
1944

2636
2673
2677
2700
2708
2713
2777
2804
2808
2836

3325
3356
3368
3496
3508
3540
3569
3576
3580
3592

ool TooRooohEln FRIREEIToERn Do mIommEE

M(K)
1/2
1/2
1/2
1/2

16/31

1

31/63
1/2
1/2
1/2

1/2
13/20
1/2
7/5
92/43
1/2
1
1
1/2
1/2

1/2
64/81
139/224
83/120
1/2
<05
5/3
1/2
1/2
7/4

17
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disc K
3596
3604
3624
3721
3732
3736
3753
3873
3877
3889

4481
4489
4493
4596
4597
4628
4641
4649
4684
4692

5297
5300
5325
5329
5333
5353
5356
5368
5369
5373

5901
5912
5925
5940
5980
6053
6088
6092
6108
6133
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M(K)

121/183

13/7

53/67

13/8
<0.7
21/11

9/8

21/19

disc K
3892
3941
3957
3969
3969
3973
3981
3988
4001
4065

4729
4749
4764
4765
4825
4841
4844
4852
4853
4857

5468
5477
5497
5521
5529
5556
5613
5620
5621
5624

6153
6184
6185
6209
6237
6241
6268
6289
6396
6401
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M(K)

7/3
1
1/2
3/2
19/8
7/9
3/5
149/73

17/24

23/7

17/15

22379
1

35,27

disc K
4104
4193
4212
4281
4312
4344
4345
4360
4364
4409

4860
4892
4933
5073
5081
5089
5172
5204
5261
5281

5629
5637
5684
5685
5697
5724
5741
5780
5821
5853

6420
6452
6453
6508
6549
6556
6557
6584
6588
6601

o2y DT Enn 2ot onn B EREHAmT=N

M(K)
< 0.55
7/5
7/2
<07
11/4
<0.7
7/5
41/35

17/11

9/2

5/4



THE EUCLIDEAN ALGORITHM IN CUBIC NUMBER FIELDS

disc K
6616
6637
6669
6681
6685
6728
6809
6856
6868
6885

7453
7464
7465
7473
7481
7528
7537
7540
7572
7573

8017
8057
8069
8092
8113
8173
8220
8276
8277
8281

8745
8761
8769
8789
8828
8829
8837
8884
8905
8909

T2 T e
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M(K) discK

7/3

5/4
67/40

1
<089
1
17/14
227/91

41/32

9/2

13/7

23/16

23/12

3/2

8/5

6901
6940
6997
7028
7032
7053
7057
7084
7117
7148

7601
7628
7636
7641
7665
7668
7673
7700
7709
7721

8281
8285
8289
8308
8372
8373
8396
8468
8472
8505

8920
9044
9045
9073
9076
9133
9149
9153
9192
9204
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M(K)

21/25

9/7

67/50

5/3

7/5

disc K
7220
7224
7244
7249
7273
7388
7404
7425
7441
7444

7745
7753
7796
7816
7825
7873
7881
7892
7925
7948

8532
8545
8556
8572
8597
8628
8637
8680
8692
8713

9217
9281
9293
9300
9301
9325
9364
9409
9413
9428

HEHZETNOENE DRmoomRiobt oo EmE oo nmREmEw g

M(K)
9/4

973/601

7/5

29/13

17/16
4/5

11/10

17/11

2
13/8

337/97
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disc K M(K) discK M(K) discK M(K)
9460 £ 9812 E 10004 FE
9517 FE 9813 £ 10040 FE
9565 E >4/5 9833 E 10069 E
9612 E 9836 £ 10077 E
9653 N 35/12 9869 E 10164 N 27/22
9676 E 9897 E 10172 E
9745 N 67/23 9905 N 9/5 10200 FE
9749 FE 9937 E 10216 N 7/4
9800 H 9/5 9980 FE 10233 FE
98056 FE 9996 H  4/3 10260 E
10261 N 11/7 10540 E 10721 FE
10273 H 27/7 10552 E 10733 F
10292 F 9/10 10561 N 11/7 10740 E
10301 & 10580 E 10812 F
10309 H 11/2 10609 FE 10844 FE
10324 F 10636 E 10865 FE
10333 N 1 10641 E 10868 FE
103563 E 10661 10889 H 13/5
10457 N 27/25 10664 E 10904 E
10484 E 10712 E 10929

The only fields with disc K < 11,000 whose Euclidean nature is currently not
known are those with discriminants 10661, 10929, and 10941. We also remark that
among the four fields which were shown to be Euclidean in [5], those with discrim-
inants 11881, 16129 and 24649 are beyond the limits of our tables.

(*) The Euclidean minimum M (K) for the field with disc K’ = —680 is
81956632
M(K) = §Tisa612"
(§) The Euclidean minimum M (K) for the field with disc K = —728 is
7483645229

M(K)= —ere——.
(£) 8158377564



